- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bader, David A (2)
-
Bryg, Bartosz (2)
-
Dindoost, Mohammad (2)
-
Rodriguez, Oliver Alvarado (2)
-
Chacko, George (1)
-
Koutis, Ioannis (1)
-
Park, Minhyuk (1)
-
Warnow, Tandy (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Community detection plays a central role in uncovering meso scale structures in networks. However, existing methods often suffer from disconnected or weakly connected clusters, undermining interpretability and robustness. Well-Connected Clusters (WCC) and Connectivity Modifier (CM) algorithms are post-processing techniques that improve the accuracy of many clustering methods. However, they are computationally prohibitive on massive graphs. In this work, we present optimized parallel implementations of WCC and CM using the HPE Chapel programming language. First, we design fast and efficient parallel algorithms that leverage Chapel’s parallel constructs to achieve substantial performance improvements and scalability on modern multicore architectures. Second, we integrate this software into Arkouda/Arachne, an open-source, high-performance framework for large-scale graph analytics. Our implementations uniquely enable well-connected community detection on massive graphs with more than 2 billion edges, providing a practical solution for connectivity-preserving clustering at web scale. For example, our implementations of WCC and CM enable community detection of the over 2-billion edge Open-Alex dataset in minutes using 128 cores, a result infeasible to compute previously.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Dindoost, Mohammad; Rodriguez, Oliver Alvarado; Bryg, Bartosz; Koutis, Ioannis; Bader, David A (, IEEE)Subgraph isomorphism algorithms face significant scalability bottlenecks on large-scale property graphs due to inefficient vertex-by-vertex search that requires extensive exploration of early search tree levels where pruning is minimal. We present HiPerMotif, a hybrid parallel algorithm that overcomes these limitations through edge-centric initialization. HiPerMotif first reorders pattern graphs to prioritize high-connectivity vertices, then systematically identifies and validates all possible first-edge mappings before injecting these pre-validated partial states directly at search depth 2. This approach eliminates costly early exploration while enabling natural parallelization over independent edge candidates. Comprehensive evaluation against state-of-the-art baselines (VF2-PS, VF3P, Glasgow) demonstrates up to 66x speedup on real-world networks and successful processing of massive datasets like the 150M-edge H01 human connectome that cause existing methods to fail due to memory constraints. Implemented in the open-source Arkouda/Arachne framework, HiPerMotif enables previously intractable large-scale network analysis in computational neuroscience and related domains.more » « lessFree, publicly-accessible full text available September 15, 2026
An official website of the United States government
